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Abstract 

In this paper we develop an error-correcthg 
algorithm in the framework of neural networks. We 
consider tbe problem of detecting and correcting of a 
linear code which is assumed to have at most one 
error. 
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1. Introduction 

The quest for efficient computational approaches 
to neurocomputing problems covers a broad spectrum 
of approaches such as neural connectivity, learning 
and correcting errors paradigms. The mathematical 
analog-model of the nervous cell must reflect axiomat- 
ically the real neuron features. Thus. the development 
of better models that simulate the hman nervous sys- 
tem is an important research topic. With the advent of 
massively parallel processing and efficient computa- 
tional techniques, renewed interest on neural nets has 
occurred. Neural nets have a vast number of applica- 
tions. They include visual and audio perception. pat- 
tern matching and classikation, robotics and sensor 

When a digital message is transmitted over a 
long distance, the received message may not be 
exactly as it is sent since there may be some interfer- 
ence. In these situations, we should be able to detect 
and if possible. conect errors. A lot of algorithms has 
been discovered about error detecting/correcting 

processing. 

codes[1,2]. This paper is an initial attempt to study 
from the neural network perspective the problem of 
correcting single-bit errors in linear codes. 

In this paper, we present the basic concept of 
neural network. and some definitions and theorem 
related to linear codes as preliminaries and then the 
constructicrm of a neural net for erroa detection and 
correction with an illustrative example. 

2. Preliminaries 

In this section, we introduce some basics of 
neural networks and the theory of error detection and 
correction in linear codes. 

2.1 Neural Network 

Neural network is a new information processing 
technique [31. It is also a computer-based simulation 
of living neurons system. Neural net models are com- 
posed of many nonljnear computational elements 
operating in parallel and manged in patterns reminis- 
cent of biological neural nets. They are called 
artificial neurons or computational elements or nodes 
which are connected via variable weights. 

McCulloch and Pitts's model computes a 
weighted s u m  of its inputs from other units and out- 
puts a one or zero according to whether the sum is 
above or below a Certain threshold. Figure 1 describes 
a simple model of a neural net. 151 

In Figure 1, the weight w', represents the 
strength of the synapse connecting neuron i to neuron 
j and it can be positive ar negative depending on 
whether synapse is excitatory or inhibitory. If there is 
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no synapse between neurun i and nema j, it is zero. 
represents the threshold 

\ "il a-+@- 
/ 
F w e  1. Schematic diagram of a McCulloch-Pitts neuron. 

Mathematically [SI, we can express the concept 
of the above model as: 

where qj is either 1 or 0 and represents the state of 
neuron i as firing 01 not firing respectively. Time t is 
taken as discrete, with cme time unit elapsing per pro- 
cessing step. @ (x) is the unit step function. This 
function is also known as threshold function. All neu- 
rons may not have the same fixed delay ( t -> t + 1 1. 
They are not updated synchronously by a central 
clock. Thus a simple generalization of the 
McCulloch-Pitts equation (1). which includes asyn- 
chronous updating and some other features such as 
con6nuous-valued units is 

where qi is continuous-valued and is called the state 
or activation of unit i. g(x) is more general than the 
threshold function 0 (x) and is called the activation 
function, gain function. transfer function or squashing 
function [SI. 

Figure 2. Common Activation Functions 

There are three c a n "  types of activation 
functions: hard limiters, threshold logic elements, and 
sigmoid Eunctiuns, as shown in Figure 2. [31 There 
may be other types of activation functicms. 
McCulloch-F'itts neuron is a simple but computation- 
ally powerful device. In principle. a synchronous 
assembly of such neurons is capable cif universal com- 
putation for suitably chosen weight wij.  In dher 
words, it can perform any computation that a digital 
computer can, though not necessarily as rapid and as 
convenient as the computer [51. 

2.2 Linear Codes 

In this section, we describe some definitions and 
a theorem from 11.21 as background information con- 
cerning our proposed model for detecting and correct- 
ing mors in linear codes within the the framework of 
neural network. 

Let V" be the set of all binary words of h g t h  
n. A binary code of length n is simply a subset C of 
V" and the members of C are called codewords. 

Definition 2.1 : A code C in V" is linear if when- 
ever a, b E C then a + b E C. In other words, C is 
linear if and only if it is a subgroup of V" in Z2. 
where 2 2  is the set of integers modulo 2. According 
to Lagrange's theorem. since a linear code is a sub- 
group of V " ,  its size IC1 is a divisor of IV"I = 2". 
Hence ICI is an integer of the form 2k, 0 < k .S n and 
k is called the dimension of C. 

We can also define the linear code in terms of 
parity-check matrix as follows. 

Definition 2.2 : A code C is a linear code if it is 
defined by C = { x E V" I Hx' = 0' } where H is a 
binary matrix with n columns and known as parity- 
check matrix (or simply, check matrix). x' denotes the 
word x in V" considered as a column vector and 0' 
denotes the all-zero column vector. 

For a detailed knowledge of linear codes, the 
reader may refer to references [1.21. Here. we will 
present some definitions and a theorem relevant to our 
problem. 

Theorem 2.1 : If no column of H consists entirely 
of zeros. and no two columns are the same, then the 
code C defined by the check matrix H will cmect one 
error. 
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Roof is given in reference [ll. 

correcting a single error in the code C is as follows: 
A ccmventional algorithm [ll for detecting rmd 

begin 
Let z be the received word. 
Compute p' ( z' is transport of z ) 
if Hz' = 0 then z is a codeword 
else begin 

Find the column h") of H 
such that Hz' = h") 
ith bit of z is incorrect. 
Complement the ith bit of z 

end 
end 

In this paper, we construct our proposed net- 
work model of correcting errors in linear codes 

in the above dehitiuns and theorem are satisfied. 
as!"hg that all the necessary conditions prescribed 

represents the l q t h  of a codeword. In the hidden 
layer (also derred to as layer 1). there are M newcm 
where M represents the number d rows in the check 
matrix H which is assumed to be givea. Codewords 
are defined depending m the checkmatrix. The reader 
may refer to the ref- D.21 for mcxe knowledge 
of the check matrix. Every input is connected with 
each neuron of layer 1. Layer 2 has N neurons which 
determine the position of the error of the received 
word. Every neuron of layer 1 is connected to each 
neuron of layer 2. Neurm in every layer are num- 
bered by positive integer in ccmsecutive increasing 
order starting from 1. 

The elements in the given check matrix m used 
as weights at the connectiuns of the N input with the 
nodes of the first layer. Let H be the given check 
matrix and h,, is the element at ith row and j th 
column of H. 

We denote the weight wr/ol of the connecticn of 
the ith neuron of the input layer with the jth neuron 
of layer 1. 

3. Neural Network Construction 

To solve the given problem, we need to con- 
struct a neural net of two phases. In the first phase, 
the net detects an error position in the codeword. In 
the second phase, the net corrects the erroneous bit 
and produces the c a t  codeword. 

We use wi;* to denote the weight of the com~ec- 
tion of the ith neuron of layer 1 with the jth neuron 
of layer 2. The values of wjj2 are also a s s i F d  by the 
elements of the check matrix H, but in the bipolar 
form (digit 0 is replaced by -1 ). 

input 
i.e. For 1 5 i S M, 1 5 j < N. 

For each neuron of layer 1. the sgn function 
Figure 4.al of the modulo 2 function is used as the 
activation function, while the hard limiter activation 
function F i g w  4.bl used for the neurcms of layer 2 
[3 $41. 

output 

Figure 3. Error detection phase (First phase) 

1 

1 

3.1 Error Detection Phase 

x > w 
-> 

0 1  U 
. - H . m  

1 

It is *Own in 3- *re are inpm to 
the network. which consists of associative memories 

Figure 4. Activation functions used in the proposed network 

CompriSig of two layers of neurons. The number N 



To detect the error. the received word is passed 
through the first layer and we allow the network to 
progress until it falls into a stable situation. In this 
case, if one neurcul of layer 2 produces value '1' 
while the rest are 'O', then it shows the pcwiticm of the 
bit which has been transmitted incarrectly. If there is 
no error in the received word, all n e m a  of the layer 

To demonstrate our solution for detecting error, 
we introduce the following variables and activation 
functim. 

2 will output 0's. 

(1) The initial input v:, 1 5 j 5 N 

(2)  he output of  neuron t in the layer 1 vfl, 
1 S W  

(3) The output of  neuron i in the layer 2 vi2, 
1- 

Let g and g2 be the activation functions for 
neurons of  layer 1 and layer 2 respectively. g' is a 
sgn function of modulo 2 function on the weighted 
sum d given inputs vi". where 1 < j 5 N. 

1 ,  if U,' mod 2 = 1 

i.e. vt' = g'(u,') = -1. otherwise 

The output values of the neurons of layer 2 are 
determined by a hard limiter function g2 13.41. 

M 

j 

Let ui2=cwj!%l , 1Sir;N and 8eM-1/2, then 

we have, 

In other words, since the ith neuron of  layer 2 
accepts as input the value u,~, where k2=M and U i 3 8 .  

the output vi2 will be equal to 1. For each neuron j # 

i of layer 2. it holds that u,%M-l and uiz<e. There- 
fore the output viz will be equal to 0 [41. 

3.2 Error Correction Phase 

In this second phase. we use the exclusive or 
(XOR) network for fhding the correct codeward. 
There are many methods for constructing the XOR 
network. In this paper we adopted two methods from 
[51 which are shown in Figures 5a and 5b. 

m 

Figure 5. Networks for XOR 

These networks use 0/1 threshold units. Each 
unit is shown with its threshold. In Figure 5a. the two 
neurons in the hidden layer compute the logical OR 
(left neuron x )  and AND (right neuron y )  of the two 
inputs and the output fires only when the x neuron 
fires and the y neuron does not fire. 

The second method [Figure 5bl needs only two 
neurons, and one in the hidden layer computes a logi- 
cal AND to inhibit the output unit when both inputs 
are on 151. 

We use the corresponding pairs of bits from the 
output of phase 1 and the received word as the input 
to one of the XOR networks shown in F i g m  5. The 
output of the second phase will be the correct code- 
word that we have expected. 

4. An Illustrative Example 

In this section. we use an example to demon- 
strate how error detection and error correction are 
worked out using our proposed network. 

Let C be the linear code defined by the check 
matrix 
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If the word 1101 10 is received and only one error has 
occurred, we will find the intended codeword by using 
our proposed network. 

In this problem, since the number of row in the check 
matrix is 3 and the length of the codeword is 6. we 
have M = 3 and N = 6. 

Error Detection 

The weights of the synapse co~ect ing between 
input layer 0 and layer 1 are: 

Inputs for the layer 1, i.e. bits d the word received, 
are 

v: = 1. v; = 1. v: -0 
v: = 1, v: = 1. v: = o  

According to the proposed network, we need to find 
the weighted sum of these inputs as follows: 

N 
U :  = ~ W $ V ?  = 1.1+1.1+0.0+1.1+0.1+0.0=3 

N 

i 

N 

u~=~w,”:v~O = 1.1+1.1+0.oeO.1+1.1+0.0=3 

U:  =zwi”:vjO = 1.1+0.(k1.0+1.1+0.1+0.0=2 
I 

The outputs of neurons in the layer 1 are : 

v : =g ‘(U : )=1 
v: =g y u ;  )=l 
v:=g’(u;)-l 

The weights of synapse connecting layer 1 and 
layer 2 are : 

Iapts for neurons at layer 2 are : 

v; =l, v ;  -1, v; 3 - 1  

The weighted sum of these inputs are: 

M 

i 

M 

j 

M 

j 

u:=~wjllzyi’ = 1.1+1.1+1. -1 = 1 

u&cwjyvjl = 1.1+1.1+ -1. -1 = 3 

u:=~wj:zyjl = -1.1+ -1.1+1. -1 = -3 

u42=~wj142vjl = 1.1+ -1.1+1. -1 = -1 

u&~wj:%jl= -1.1+1.1+ -1. -1 = 1 

u;=:wjl62yjl = 1.1+ -1.1+ -1. -1 = 1 

M 

j 

M 

i 

M 

j 

Since threshold B=M-1/2 = 3-112 = 2.5. the outputs 
of neurons in the layer 2 are : 

After the first phase, we have detected that second 
position of the given word is in error. 

Error Correction 

In the second phase, we use the XOR network 
with the inputs of the corresponding bit positions of 
the output of phase 1 ( 0 1 0 0 0 0) and the received 
word ( 1 1 0 1 1 0 ). Then the XOR network produces 
thecorrectcodeword( 1 0 0  1 1  0) .  
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5. Concluding Remarks 

The quest for efficient computational approach 
to neural network problems has u n m o n e  a 
significant evolution in the last few years. This paper 
presented an error-correcting algorithm in the frame- 
work of neural networks. We considered the problem 
of detection and correction of a linear code which is 
assumed to have at most one error. The effort of 
simulation runs fur this network convinced us its 
carrectness. convergence and high speed computation. 
Follow-up studies are needed to gain better insight 
into the general problem of errorcorrecting and neu- 
rocomputing formalism for modeling of error correct- 
ing p a r a d i p  with neural citcuits. We may also con- 
tinue! working an the emerging area of dynamic sys- 
tems in the context of neural network. The advantage 
of the proposed network may be applied for the real 
time error detection and correction and parakl com- 
putation in the context of information flow in pipelied 
implementation. 
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